
Preference Elicitation and Query Learning

Avrim Blum1, Jeffrey Jackson2, Tuomas Sandholm1, and Martin Zinkevich1

1 Carnegie Mellon University, Pittsburgh PA 15213, USA,
maz@cs.cmu.edu,

WWW home page: http://www.cs.cmu.edu/~avrim,sandholm,maz/
2 Duquesne University,Pittsburgh PA 15282, USA,

jackson@mathcs.duq.edu,
WWW home page: http://www.mathcs.duq.edu/~jackson/

Abstract. In this paper we initiate an exploration of relationships be-
tween “preference elicitation”, a learning-style problem that arises in
combinatorial auctions, and the problem of learning via queries studied
in computational learning theory. Preference elicitation is the process of
asking questions about the preferences of bidders so as to best divide
some set of goods. As a learning problem, it can be thought of as a set-
ting in which there are multiple target concepts that can each be queried
separately, but where the goal is not so much to learn each concept as
it is to produce an “optimal example”. In this work, we prove a number
of similarities and differences between preference elicitation and query
learning, giving both separation results and proving some connections
between these problems.

1 Introduction

In a combinatorial auction, an entity (the “auctioneer”) has a set S of n items
that he would like to partition among a set of k bidders. What makes an auc-
tion combinatorial is that the valuations of the bidders (how much they would
be willing to pay for different subsets of items) may not necessarily be linear
functions over the items. For instance, if item a is a left shoe and item b is a
right shoe, then a bidder might be willing to pay a reasonable amount for the
bundle {a, b} but very little for just {a} or just {b}. In the other direction, if a
and b are each pairs of shoes, then a bidder might value {a, b} less than the sum
of his valuations on {a} and {b} (especially if he just needs one pair of shoes
right now). A standard goal for the auctioneer in such a setting is to determine
the allocation of goods that maximizes social welfare: this is the sum, over all
bidders, of the value that each bidder places on the set of items that he receives.
This goal is perhaps most natural if one thinks of the auctioneer as not having
a financial interest of its own but simply as an agent acting to help divide up
a given set of items in a way that maximizes overall happiness. For example,
the case of k = 2 can be thought of as a situation in which one of the bidders
represents a buyer (with various preferences over bundles of items) and the other
bidder represents a marketplace (with various discounts and package-deals), and

2

the auctioneer is acting as an agent to help the buyer decide what subset of
items to purchase from the marketplace.1

There are a number of issues that arise in the combinatorial auction set-
ting. For example, there is much work on designing protocols (mechanisms)
so that bidders will be truthful in reporting their valuations and not want to
“game” the system (e.g., [1–3]). But another issue is that even if we can get bid-
ders to be truthful, their valuation functions can be quite complicated. Because
of this, bidding in a traditional manner can require an exponential amount of
communication. This has led researchers to study the notion of preference elic-
itation, in which the auctioneer asks questions of the bidders in order to learn
(elicit) enough information about their preferences so as to be able to decide on
the best (or approximately best) allocation of the items. Because the issues of
truthfulness can be handled even in this setting of incremental preference elic-
itation via known mechanisms [4], much of this previous work—as well as this
paper—focuses solely on the elicitation question of how to extract the necessary
information needed for allocation.

1.1 Preference Elicitation and Query Learning

We can think of preference elicitation in the context of query learning by think-
ing of the n items as features, thinking of a subset of items (a “bundle”) as an
example x ∈ {0, 1}n indicating which items are in the subset, and thinking of
the bidder’s valuation function as a target function. The standard assumption
of “free disposal” (bidders can throw away items for free), means we can assume
that these valuation functions are monotone, though they typically will not be
boolean-valued. Furthermore, one of the natural types of queries studied in pref-
erence elicitation, the value query (where the auctioneer asks the bidder how
much he values some bundle), corresponds exactly with the learning-theoretic
notion of a membership query.

On the other hand, a key difference between preference elicitation and query
learning is in the goals. In learning, the objective is to exactly or approximately
recover the target function. In preference elicitation, however, the goal is more
one of finding the “best example”. For instance, if there are just two bidders
with preference functions f and g, then the goal is to find a partition (S′, S′′)
of the n items to maximize f(S′) + g(S′′). Thinking in terms of functions over
{0, 1}n, the goal is to find x ∈ {0, 1}n to maximize f(x) + g(x̄).

Notice that one of the immediate differences between preference elicitation
and query learning is that preference elicitation makes sense even if the target
functions do not have short descriptions, or even short approximations. We will
see some interesting examples later, but as a simple case, if we learn that bidder
A will pay $100 for the entire set of n items but no more than $50 for any subset
of size n − 1 (she is a collector and wants the whole set), and B will pay a

1 To think of this as a combinatorial auction, it is easiest to imagine that the auctioneer
has pre-purchased all the items, and then is deciding which the buyer should keep
and which should be returned for a refund.

3

maximum of $50 even for the whole lot, then we know we might as well give all
items to A, and we do not need to know exactly how much each bidder would have
paid for different subsets. On the other hand, it is quite possible for allocation
of items to be computationally hard, even if the preferences of all the bidders
are known. For example, even if each bidder’s preferences can be expressed as a
simple conjunction (these are called “single-minded” bidders), then if there are
many bidders, allocation is equivalent to the NP-hard set-packing problem. For
somewhat more complicated preference functions, such as read-once formulas,
allocation can be NP-hard even for two bidders [5].

Another difference concerns the types of queries that are most natural in
each setting. While value/membership queries are common to both, equivalence
queries are quite unnatural in the context of preference elicitation. On the other
hand, the demand query, a powerful type of query for preference elicitation
introduced by Nisan [6], does not seem to have been studied in query learning.2

In this paper, we discuss similarities and differences between the three objec-
tives of exact learning, approximate learning, and preference elicitation. We then
give a number of upper and lower bounds for preference elicitation of natural
preference (concept) classes. We focus primarily on the case of k = 2 bidders, be-
cause even this case is quite interesting, both practically (since it models a buyer
and a marketplace as mentioned above) and technically. We show that monotone
DNF formulas (long known to be hard to learn exactly from membership queries
alone but easy to learn approximately) are hard for preference elicitation, even
with demand queries. However, the hardness we show is 2Ω(

√
n)-hard rather than

2Ω(n)-hard. On the other hand, log(n)-DNF are easy for preference-elicitation,
even if the functions have more than polynomially many terms. We also give a
number of general statements about when the ability to succeed for one of these
goals implies being able to succeed in the others. We then end with a number of
open problems.

1.2 Related Work on Combinatorial Auctions

Combinatorial auctions are economically efficient mechanisms for selling n items
to multiple bidders, and are attractive when the bidders’ valuations on bundles
exhibit complementarity (a bundle of items is worth more than the sum of its
parts) and/or substitutability (a bundle is worth less than the sum of its parts).
Determining the winners in such auctions, given the bids, is a complex opti-
mization problem that has received considerable attention (e.g., [7–9, 2, 10, 11]).
Equally important, however, is the problem of communication. There are 2n− 1
bundles, and each agent may need to bid on all of them to fully express its
preferences. Appropriate bidding languages [8, 12, 9, 2, 13, 14] can address the
communication overhead in some cases where the bidder’s utility function is
compressible. However, they still require the agents to completely determine

2 In this query, the auctioneer proposes a set of item prices and then asks the bidder
what set of items he would choose to buy at those prices. These will be discussed
further in Section 2.

4

and transmit their valuation functions and as such do not solve all the issues.
So in practice, when the number of items for sale is even moderate, the bidders
cannot bid on all bundles. Instead, they may bid on bundles which they will
not win, and they may fail to bid on bundles they would have won. The former
problem leads to wasted effort, and the latter problem leads to reduced economic
efficiency of the resulting allocation of items to bidders.

Selective incremental preference elicitation by the auctioneer was recently
proposed to address these problems, and several papers have studied different
types of elicitors [4, 15, 16, 6, 17]. On the negative side, if valuations are arbitrary
monotone functions, then the worst-case communication complexity to find an
(even approximately) optimal allocation is exponential in the number of items,
no matter what query types are used [6]. However, experimentally, only a small
decreasing fraction of the bidders’ preferences can be elicited before the provably
optimal allocation is found [16].

Vickrey-Clark-Groves [18–20] schemes provide a method for charging bidders
so that each is motivated to tell the truth about its valuations. Briefly, in this
scheme the elicitor first finds the optimal allocation OPT . Then, for each bidder
i, it finds the optimal allocation OPTi without bidder i. Bidder i is charged
a fee based on the difference between the utility of the other agents in OPT
and OPTi. One then proves that in such a scheme, each bidder is motivated
to be truthful. This means that if one can elicit the optimal allocation exactly
assuming that agents tell the truth, one can determine the Vickrey payments
that make truth-telling a good strategy for the bidders. Because of this, for the
remainder of the paper we assume that the bidders are truthful.

Driven by the same concerns as preference elicitation in combinatorial auc-
tions, there has been significant recent work on ascending combinatorial auctions
(e.g., [21–26]). These are multistage mechanisms. At each stage the auctioneer
announces prices (on items or in some cases on bundles of items), and each bid-
der states which bundle of items he would prefer (that is, which bundle would
maximize his valuation minus the price he would have to pay for the bundle) at
those prices. The auctioneer increases the prices between stages, and the auc-
tion usually ends when the optimal allocation is found. Ascending auctions can
be viewed as a special case of preference elicitation where the queries are de-
mand queries (“If these were the prices, what bundle would you buy from the
auction?”) and the query policy is constrained to increasing the prices in the
queries over time. Recently it was shown that if per-item prices suffice to sup-
port an optimal allocation (i.e., a Walrasian equilibrium exists), then the optimal
allocation can be found with a polynomial number of queries (where each query
and answer is of polynomial size) [6].

Recently, some of us [5], noticing the connection to query learning, showed
how the AHK algorithm [27] could be adapted to elicit preferences expressable
as read-once-formulas over gates that are especially natural in the context of
combinatorial auctions. This work goes on to discuss the computational problem
of determining the best allocation once the formulas are elicited. On the negative
side, it shows that even for two bidders with read-once-formula preferences,

5

allocation can be NP-hard, but on the other hand, if one of the two bidders has
a linear value function, then allocation can be done in polynomial time.

2 Notation and Definitions

Because subset notation is most natural from the point of view of preference
elicitation, we will use both subset notation and bit-vector notation in this paper.
That is, we will think of the instance space X both as elements of {0, 1}n and
as the power set of some set S of n items. We will also interchangeably call a
subset of S a “bundle” or an “example”. When discussing preference elicitation,
we assume there are k bidders with monotone real-valued preference functions
over the instance space. The objective of preference elicitation is to determine
a k-way partition (S1, . . . , Sk) of S to maximize f1(S1) + f2(S2) + . . . + fk(Sk),
where f1, . . . , fk are the k real-valued preference functions. Typically we will
assume k = 2.

Let C be a class of monotone functions. We will be interested in the learn-
ability of various C in the exact learning, approximate learning, and preference
elicitation models given the ability to make various types of queries. By “ap-
proximate learning” we mean learning with respect to the uniform distribution
on inputs — i.e.., finding a hypothesis function that agrees with the target over
almost all of the instance space. While learning algorithms are typically consid-
ered efficient if they run in time polynomial in the number of items n and in
the length of the representation of the target (and possibly other parameters),
we will at times explicitly require run time bounds independent of description
length in order to demonstrate a fundamental advantage of preference elicitation
for problems involving complex targets. The hardness observations for learning
problems when this restriction is in place are therefore not hardness results in
the standard learning-theoretic sense.

Query types: A membership query or value query is a request x ∈ {0, 1}n to an
oracle for a target f . The oracle responds with the value f(x) corresponding to
x. We can think of these queries as asking the following question of a bidder:
“How much are you willing to pay for this bundle of items?”

A demand query is a request w ∈ (R+)n (R+ here represents non-negative
real values) to an oracle for a target f . The oracle responds with an example
x ∈ {0, 1}n that maximizes f(x)−w ·x. We can think of these queries as asking
the following question of a bidder: “If these are the costs of items, what would
you choose to buy?”

We can illustrate the power of demand queries with the following observation
due to Nisan. If one of the bidders has a linear valuation function, and the other
is arbitrary, then preference elicitation can be done with n + 1 queries: n value
queries and one demand query. Specifically, we simply ask the linear bidder
n value queries to determine his value on each item, and then send the other
bidder these values as prices and ask him what he would like to buy. Thus it is
interesting that our main lower bounds hold for demand queries as well.

6

Natural function/representation classes: One of the most natural representation
classes of monotone functions in machine learning is that of monotone DNF
formulas. In preference elicitation, the analog of this representation is called the
“XOR bidding language”3. A preference in this representation is a set of bundles
(terms) T = {T1, T2, . . . , Tm} along with values vi for each bundle Ti. The value
of this preference for all S′ ⊆ S is:

fT,v(S′) = max
Ti⊆S′

vi.

In other words, the value of a set of items S′ is the maximum value of any
of the “desired bundles” in T that are contained in S′. We will call this the
DNF representation of preferences, or “DNF preferences” for short. Our hardness
results for this class will all go through for the boolean case (all vi are equal to
1), but our positive results will hold for general vi.

3 DNF Preferences

Angluin [28] shows that monotone DNF formulas are hard to exactly learn from
membership queries alone, but are easy to learn approximately. Angluin’s exam-
ple showing hardness of exact learning can be thought of as follows: imagine the
n items are really n/2 pairs of shoes. The buyer would be happy with any bundle
containing at least one pair of shoes (any such bundle is worth $1). But then we
add one final term to the DNF: a bundle of size n/2 containing exactly one shoe
from each pair, where for each pair we flip a coin to decide whether to include
the left or right shoe. Since the learning algorithm already knows the answer will
be positive to any query containing a pair of shoes, the only interesting queries
are those that contain no such pair, and therefore it has to match the last term
exactly to provide any information. Thus even for a randomized algorithm, an
expected 2n/2−1 queries are needed for exact learning of monotone DNF.

We now consider the preference elicitation problem when one or more pref-
erences are represented as monotone DNF expressions, beginning with a few
simple observations.

Observation 1 If f is a known DNF preference function with m terms, and g is
an arbitrary unknown monotone preference function, then preference elicitation
can be performed using m value queries.

Proof. Because g is monotone, the optimal allocation will be of the form (Ti, S−
Ti) for some term Ti in f . So, we simply need to query g once for each set S−Ti

and then pick the best of these m partitions. ut
3 This terminology is to indicate that the bidder wants only one of his listed bundles

and will not pay more for a set of items that contains multiple bundles inside it.
This usage is very different from the standard definition of XOR as a sum modulo
2. Therefore, to avoid confusion, we will not use the XOR terminology here.

7

Observation 2 If f and g are boolean DNF preferences each containing ex-
actly one term that is not size 2 (the hard case in Angluin’s construction) then
preference elicitation can be performed using polynomially (in n) many value
queries.

Proof. We begin by finding all terms in f of size 2 by asking n2 queries. Suppose
two of these terms T1 and T2 are disjoint. In that case, we query g on S − T1

and S − T2. If one answer is “yes” then we are done. If both answers are “no”
then this means all of g’s terms intersect both T1 and T2. In particular, g can
have only a constant number of terms, and therefore exactly learning g is easy,
after which we can then apply Observation 1 (swapping f and g). On the other
hand, if f does not have two disjoint terms of size 2, then the only way f can
have more than 3 such terms is if they all share some common item xi. It is
thus now easy to learn the large term in f : if f(S − {xi}) is positive, we can
“walk downward” from that example to find it, else we can walk downward from
the example in which all the other items in the small terms have been removed.
Once f has been learned, we can again apply Observation 1. ut

We now show that even though Angluin’s specific example is no longer hard
in the preference elicitation model, monotone DNF formulas remain hard for
preference elicitation using value queries, even when the preference functions
are quite small. We then extend this result to demand queries as well.

Theorem 1. Preference elicitation of monotone DNF formulas requires 2Ω(
√

n)

value queries. This holds even if each bidder’s preference function has only
O(
√

n) terms.

Proof. We construct a hard example as follows. There will be n = m2 items,
arranged in an m-by-m matrix. Let us label the items xij for 1 ≤ i, j ≤ m.
We will call the two preference functions fR and fC . Both will be boolean
functions. Bidder fR is happy with any row: that is, fR = x11x12 · · ·x1m ∨
x21x22 · · ·x2m ∨ . . . ∨ xm1xm2 · · ·xmm. Bidder fC is happy with any column:
that is, fC = x11x21 · · ·xm1 ∨ x21x22 · · ·xm2 ∨ . . . ∨ x1mx2m · · ·xmm. Thus, at
this point, it is impossible to make both bidders happy. However, we now add
one additional term to each preference function. We flip a coin for each of the
n items in S, labeling the item as heads or tails. Let H be the set of all items
labeled heads, and T be the set of all items labeled tails. We now add the con-
junction of all items in H as one additional term to fR, and the conjunction of
all items in T as one additional term to fC . Thus now it is possible to make
both bidders happy, and the optimal allocation will be to give the items in H to
the “row bidder” and the items in T to the “column bidder”.

We now argue that no query algorithm can find this allocation in less than
1
22

√
n − 2 queries in expectation. Let us enforce that the last two questions of

the query protocol are the values of the actual allocation. That is, if the elicitor
assigns the items in H to the row agent and T to the column agent, it must
ask the row agent the value of H and the column agent the value of T . This
constraint only increases the length of the protocol by at most 2 questions.

8

Let us assume that the elicitor knows in advance the structure of the problem,
the row sets and the column sets, and the only information the elicitor does not
know are the sets H and T . In this case, we can assume without loss of generality
that the elicitor never asks the row bidder about any bundle containing a row
(because he already knows the answer will be “yes”) and similarly never asks
the column bidder about any bundle containing a column.

We now argue as follows. If the elicitor asks a query of the row bidder, the
query must be missing at least one item in each row, and if the elicitor ask
a query of the column bidder, it must be missing at least one item in each
column. However, notice that in the first case, the answer will be positive only
if all missing items are in T , and in the second case, the answer will be positive
only if all missing items are in H. Therefore, for any given such query, the
probability that the answer will be positive taken over the random coin flips is
at most 2−

√
n. Thus, for any elicitation strategy, the probability the elicitor gets

a positive response in the first k queries is at most k2−
√

n and therefore the
expected number of queries is at least 1

22
√

n. ut

We now show that preference elicitation remains hard for DNF preferences
even if we allow demand queries.

Theorem 2. Even if both demand queries and value queries are allowed, prefer-
ence elicitation of monotone DNF formulas requires 2Ω(

√
n) queries. This holds

even if each bidder’s preference function has only O(
√

n) terms.

Proof. We use the same example as in the proof of Theorem 1. As in that proof,
we can insist that the last question be a demand query where the agent responds
with the set H or T respectively. Let us without loss of generality consider a
sequence of demand queries to the “row bidder”. What we need to calculate now
is the probability, for any given cost vector w, that the set H happens to be the
cheapest term in his DNF formula. The intuition is that this is highly unlikely
because H is so much larger than the other terms.

Specifically, for a given query cost vector w, let wi be the total cost of the
ith row. Thus, the cheapest row has cost min(w1, . . . , wm) and the expected cost
of H is 1

2 (w1 + . . . + wm). One simple observation that helps in the analysis is
that if we define hi as the cost of the items in H that are in the ith row, then
Pr(hi ≥ wi/2) ≥ 1/2. That is because if any particular subset of the ith row has
cost less than wi/2, its complement in the ith row must have cost greater than
wi/2. Furthermore, these events are independent over the different rows.

So, we can reduce the problem to the following: we have m independent
events each of probability at least 1/2. If at least two of these events occur,
the elicitor gets no information (H is not the cheapest bundle because it is not
cheaper than the cheapest row). Thus, the probability the elicitor does get some
information is at most (m + 1)2−m and the expected number of queries is at
least 1

2(m+1)2
m. ut

Open Problem 1 Can preferences expressible as polynomial-size DNF formu-
las be elicited in 2O(

√
n) value queries or demand queries?

9

3.1 log(n)-DNF Preferences

In the previous problem, even though there were only O(
√

n) terms in each
preference function, the terms themselves were fairly large. What if all of the
terms are small, of size no more than log n? Observe that there are

(
n

log n

)
possible

terms of size log n, so some members of this class cannot be represented in
poly(n) bits.

Theorem 3. If f and g are DNF-preferences where no term is of size more
than log2 n, then preference elicitation can be performed in a number of value
queries polynomial in n.

Proof. We begin by giving a randomized construction and then show a deran-
domization.

For convenience let us put an empty term T0 of value 0 into both f and g.
With this convention we can assume the optimal allocation satisfies some term
T ′ ∈ f and some term T ′′ ∈ g.

We now simply notice that since T ′ and T ′′ are both of size at most log2 n,
a random partition (S′, S′′) has probability at least 1/n2 of satisfying S′ ⊇ T ′

and S′′ ⊇ T ′′. So, we simply need to try O(n2 log 1
δ) random partitions and take

the best one, and with probability at least 1− δ we will have found the optimal
allocation.

We can now derandomize this algorithm using the (n, k)-universal sets of
Naor and Naor [29]. A set of assignments to n boolean variables is (n, k)-universal
if for every subset of k variables, the induced assignments to those variables cov-
ers all 2k possible settings. Naor and Naor [29] give efficient explicit constructions
of such sets using only 2O(k) log n assignments. In our case, we can use the case
of k = 2 log2 n, so the construction is polynomial time and size. Each of these
assignments corresponds to a partition of the items, and we simply ask f and g
for their valuations on each one and take the best. ut

4 General Relationships

In this section we describe some general relationships between query learning and
preference elicitation. We begin with an example in which preference elicitation is
easy but exact learning is hard, even though the function has a small description.
We then show that in certain circumstances, however, the ability to elicit does
imply the ability to learn with queries.

4.1 Almost-Threshold Preferences

We now define a class of preference functions that we call almost-threshold. This
class will be used to show that, even if all of the functions in a class have
representations of size polynomial in n, we can still separate exact learning and
preference elicitation with respect to membership queries.

10

An “almost threshold” preference function is defined by specifying a single
set S′. This set in turn defines a preference function that is 1 for any set of size
greater than or equal to |S′|, except for S′ itself, and is 0 otherwise. Formally,
for any S′ 6= ∅, define:

hS′(S′′) =
{

1 if S′′ 6= S′ and |S′′| ≥ |S′|
0 otherwise

The class HAT of almost-threshold preference functions is then HAT = {hS′}.

Observation 3 It requires at least
(

n
dn/2e−1

)
membership queries to exactly learn

the class HAT .

Theorem 4. If f, g ∈ HAT then the optimal allocation can be elicited in 4 +
log2 n membership queries.

Proof. Assume |S| > 2 and suppose f = hS′ . The first step is to determine |S′|.
We can do this in log2 n + 1 queries using binary search. We next use two more
queries to find two sets T, T ′ of size |S′| such that f(T) = f(T ′) = 1. This can be
done by just picking three arbitrary sets of size |S′| and querying the first two:
if either has value 0 then the third has value 1. Then, we test if g(S\T) = 1. If
it is, then T, S\T is an optimal allocation. Otherwise, T ′, S\T ′, regardless of its
value, is an optimal allocation. ut

4.2 Positive Results

We now show that in certain circumstances, however, the ability to elicit does
imply the ability to learn with queries. In particular, we will show that in certain
cases, the ability to perform preference elicitation will provide us with a Superset
Query oracle, which together with membership queries can allow us to to learn
concept classes not learnable by membership queries alone.

Definition 1. A superset query oracle for a concept class H takes in a
function f ∈ H as input. If f is a superset of the target f∗, that is, {x : f(x) =
1} ⊇ {x : f∗(x) = 1}, then the query returns “true”. Otherwise the query
produces a counterexample: an x such that f(x) = 0 but f∗(x) = 1.

Notice that Angluin’s algorithm [28] for learning Monotone DNF can use
superset queries instead of equivalence queries, because the hypothesis is always
a subset of the target function. Furthermore, any subclass of Monotone DNF
that is closed under removal of terms can be learned from superset queries and
membership queries by the same algorithm.

What makes this interesting is the following relationship between preference
elicitation and superset queries. First, for any boolean function f , let us define
its “dual”

f̂(S′) = 1− f(S\S′).

Or, in other words, f̂(x) = f̄(x̄). Given a hypothesis space H, define Ĥ =
{f̂ : f ∈ H}. For example, the dual of log(n)-DNF preferences is log(n)-CNF
preferences. The set of monotone functions is closed under dual.

11

Theorem 5. If, given f ∈ H and g ∈ Ĥ, one can elicit the optimal allocation
S, S′ using M value queries, then one can perform a superset query on H using
M + 2 membership queries.

Proof. Suppose that f∗ is the target concept and one wants to perform a superset
query with g ∈ H. First, compute ĝ ∈ Ĥ. Then, perform preference elicitation on
f∗, ĝ. If this procedure returns an allocation satisfying both parties, this means
we have an x such that f∗(x) = 1 and ĝ(x̄) = 1. But, ĝ(x̄) = ḡ(x) so this
means that x is a counterexample to the superset query. On the other hand if
the elicitation procedure fails to do so, then this means no such x exists so the
superset query can return “true”. ut

Corollary 1. If H is a subclass of monotone DNF that is closed under removal
of terms, and if one can perform preference elicitation for (H, Ĥ), then H is
learnable from membership queries alone.

5 Conclusions and Open Problems

In machine learning, one’s objective is nearly always to learn or approximately
learn some target function. In this paper, we relate this to the notion of preference
elicitation, in which the goal instead is to find the optimal partitioning of some
set of items (to find an example x maximizing f(x) + g(x̄).)

We now describe several open problems left by this work. We begin with a
problem stated above in Section 3.

Open Problem 1 Can preferences expressible as polynomial-size DNF formu-
las be elicited in 2O(

√
n) value queries or demand queries?

A somewhat fuzzier question related to our results on log(n)-DNF is the
following. Our algorithm in this case was non-adaptive: the questions asked did
not depend on answers to previous questions. It seems natural that for some
classes adaptivity should help. In fact, it not hard to generate artificial examples
in which this is the case. However, we know of no natural example having this
property.

Open Problem 2 Are there natural classes of functions for which exact learn-
ing is information-theoretically hard, preference elicitation via a non-adaptive
algorithm is hard (i.e., one in which the questions can all be determined in ad-
vance) but elicitation by an adaptive algorithm is easy.

One of the oldest techniques for preference elicitation is an ascending auction.
An ascending auction can be considered to be a sequence of increasing demand
queries, where if one asks a query w′ after a query w, then it must be the case
that for all i, w′

i ≥ wi. One interesting open question is:

Open Problem 3 Does there exist a preference elicitation problem that is hard
(or impossible) to elicit using an ascending auction but easy to elicit using de-
mand queries?

12

Acknowledgements

This material is based upon work supported under NSF grants CCR-0105488,
ITR CCR-0122581, CCR-0209064, ITR IIS-0081246, and ITR IIS-0121678. Any
opinion, findings, conclusions or recommendations expressed in this publication
are those of the authors and do not necessarily reflect the views of the National
Science Foundation.

References

1. Sandholm, T.: eMediator: A next generation electronic commerce server. Com-
putational Intelligence 18 (2002) 656–676 Special issue on Agent Technology for
Electronic Commerce. Early versions appeared in the Conference on Autonomous
Agents (AGENTS-00), pp. 73–96, 2000; AAAI-99 Workshop on AI in Electronic
Commerce, Orlando, FL, pp. 46–55, July 1999; and as a Washington University,
St. Louis, Dept. of Computer Science technical report WU-CS-99-02, Jan. 1999.

2. Nisan, N.: Bidding and allocation in combinatorial auctions. In: Proceedings of the
ACM Conference on Electronic Commerce (ACM-EC), Minneapolis, MN (2000)
1–12

3. Lehmann, D., O’Callaghan, L.I., Shoham, Y.: Truth revelation in rapid, approx-
imately efficient combinatorial auctions. Journal of the ACM (2003) To appear.
Early version appeared in ACMEC-99.

4. Conen, W., Sandholm, T.: Preference elicitation in combinatorial auctions: Ex-
tended abstract. In: Proceedings of the ACM Conference on Electronic Commerce
(ACM-EC), Tampa, FL (2001) 256–259 A more detailed description of the algorith-
mic aspects appeared in the IJCAI-2001 Workshop on Economic Agents, Models,
and Mechanisms, pp. 71–80.

5. Zinkevich, M., Blum, A., Sandholm, T.: On polynomial-time preference elicita-
tion with value queries. In: Proceedings of the ACM Conference on Electronic
Commerce (ACM-EC), San Diego, CA (2003)

6. Nisan, N., Segal, I.: The communication complexity of efficient allocation problems
(2002) Draft. Second version March 5th.

7. Rothkopf, M.H., Pekeč, A., Harstad, R.M.: Computationally manageable combi-
natorial auctions. Management Science 44 (1998) 1131–1147

8. Sandholm, T.: Algorithm for optimal winner determination in combinatorial auc-
tions. Artificial Intelligence 135 (2002) 1–54 First appeared as an invited talk at
the First International Conference on Information and Computation Economies,
Charleston, SC, Oct. 25–28, 1998. Extended version appeared as Washington Univ.,
Dept. of Computer Science, tech report WUCS-99-01, January 28th, 1999. Con-
ference version appeared at the International Joint Conference on Artificial Intel-
ligence (IJCAI), pp. 542–547, Stockholm, Sweden, 1999.

9. Fujishima, Y., Leyton-Brown, K., Shoham, Y.: Taming the computational com-
plexity of combinatorial auctions: Optimal and approximate approaches. In: Pro-
ceedings of the Sixteenth International Joint Conference on Artificial Intelligence
(IJCAI), Stockholm, Sweden (1999) 548–553

10. Andersson, A., Tenhunen, M., Ygge, F.: Integer programming for combinatorial
auction winner determination. In: Proceedings of the Fourth International Con-
ference on Multi-Agent Systems (ICMAS), Boston, MA (2000) 39–46

13

11. Sandholm, T., Suri, S., Gilpin, A., Levine, D.: CABOB: A fast optimal algorithm
for combinatorial auctions. In: Proceedings of the Seventeenth International Joint
Conference on Artificial Intelligence (IJCAI), Seattle, WA (2001) 1102–1108

12. Sandholm, T.: eMediator: A next generation electronic commerce server. In:
Proceedings of the Fourth International Conference on Autonomous Agents
(AGENTS), Barcelona, Spain (2000) 73–96 Early version appeared in the AAAI-99
Workshop on AI in Electronic Commerce, Orlando, FL, pp. 46–55, July 1999, and
as a Washington University, St. Louis, Dept. of Computer Science technical report
WU-CS-99-02, Jan. 1999.

13. Hoos, H., Boutilier, C.: Bidding languages for combinatorial auctions. In: Proceed-
ings of the Seventeenth International Joint Conference on Artificial Intelligence
(IJCAI), Seattle, WA (2001) 1211–1217

14. Sandholm, T., Suri, S.: Side constraints and non-price attributes in markets. In:
IJCAI-2001 Workshop on Distributed Constraint Reasoning, Seattle, WA (2001)
55–61

15. Conen, W., Sandholm, T.: Differential-revelation VCG mechanisms for combinato-
rial auctions. In: AAMAS-02 workshop on Agent-Mediated Electronic Commerce
(AMEC), Bologna, Italy (2002)

16. Hudson, B., Sandholm, T.: Effectiveness of preference elicitation in combinato-
rial auctions. In: AAMAS-02 workshop on Agent-Mediated Electronic Commerce
(AMEC), Bologna, Italy (2002) Extended version: Carnegie Mellon University,
Computer Science Department, CMU-CS-02-124, March. Also: Stanford Institute
for Theoretical Economics workshop (SITE-02).

17. Smith, T., Sandholm, T., Simmons, R.: Constructing and clearing combinatorial
exchanges using preference elicitation. In: AAAI-02 workshop on Preferences in
AI and CP: Symbolic Approaches. (2002) 87–93

18. Vickrey, W.: Counterspeculation, auctions, and competitive sealed tenders. Journal
of Finance 16 (1961) 8–37

19. Clarke, E.H.: Multipart pricing of public goods. Public Choice 11 (1971) 17–33
20. Groves, T.: Incentives in teams. Econometrica 41 (1973) 617–631
21. Parkes, D.C.: Optimal auction design for agents with hard valuation problems.

In: Agent-Mediated Electronic Commerce Workshop at the International Joint
Conference on Artificial Intelligence, Stockholm, Sweden (1999)

22. Parkes, D.C.: iBundle: An efficient ascending price bundle auction. In: Proceedings
of the ACM Conference on Electronic Commerce (ACM-EC), Denver, CO (1999)
148–157

23. Ausubel, L.M., Milgrom, P.: Ascending auctions with package bidding. Technical
report (2001) Draft June 7th.

24. Wurman, P.R., Wellman, M.P.: AkBA: A progressive, anonymous-price combina-
torial auction. In: Proceedings of the ACM Conference on Electronic Commerce
(ACM-EC), Minneapolis, MN (2000) 21–29

25. Bikhchandani, S., de Vries, S., Schummer, J., Vohra, R.V.: Linear programming
and Vickrey auctions (2001) Draft.

26. Bikhchandani, S., Ostroy, J.: The package assignment model. UCLA Working
Paper Series, mimeo (2001)

27. Angluin, D., Hellerstein, L., Karpinski, M.: Learning read-once formulas with
queries. In: Journal of the ACM. Volume 40. (1993) 185–210

28. Angluin, D.: Queries and concept learning. Machine Learning 2 (1988) 319–342
29. Naor, J., Naor, M.: Small-bias probability spaces: Efficient constructions and ap-

plications. In: Proc. 22nd Annual ACM Symposium on Theory of Computing,
Baltimore (1990) 213–223

