
Winning the Lemonade Stand Game: Cooperation or Defection?

Taha Rafiq
University of Waterloo
t2rafiq@uwaterloo.ca

Abstract

The Lemonade Stand Game (LSG) is a simple 12-action
iterated constant sum game in which three agents com-
pete to maximize their utility over a period of n rounds.
The Lemonade Stand Game Tournament (LSGT) is an
annual agent design competition based on the foremen-
tioned game. This paper examines various strategies
employed by agents in the LSGT 2011 and proposes a
new strategy that outperforms all the previous strategies
by a significant margin (83% performance improvement
over the top ranked agent from LSGT 2011). The fun-
damental questions addressed by this paper are whether
cooperation is always the best strategy in LSG, and how
can an agent maximize it’s utility when other agents are
not cooperative.

Introduction
Autonomous agent interaction is a growing area of research
in the artificial intelligence community. In an autonomous
environment, agents take actions that are a response to the
environment and their actions themselves also form a part
of the environment that other agents respond to. Because
of the autonomous nature of the environment, agents may
choose to take actions that are not entirely rational or based
on game-theoretic principles. Herein lies an important chal-
lenge of multiagent systems research; there may be strate-
gies that are provably superior considering a rational world,
however agents in the real world rarely behave in this man-
ner (Zinkevich 2011a).

How should an agent behave when this is the case? This
paper looks to examine the question stated above using an
empirical study of agent strategies in the Lemonade Stand
Game. Previous competition results of LSGT demonstrate
that simply using proven artificial intelligence methods such
as approximating an equilibrium strategy or regret mini-
mization does not result in successful agents. In fact, the
best performing agents employ completely different strate-
gies (Zinkevich 2011a). The reason behind this stems from
the fact that the LSG isn’t solvable, therefore traditional
methods such as equilibrium computation and minimax do
n’t work. Furthermore, combining strategies from different

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

equilibria can yield highly sub-optimal strategy profiles in
the LSG (Zinkevich 2011a).

Overview of the Lemonade Stand Game
The Lemonade Stand Game is a 12-action constant sum
game which is played between three agents. The LSG web-
site (Zinkevich 2011b) describes the game as follows:

It is summer on Lemonade Island, and you need to
make some cash. You decide to set up a lemonade stand
on the beach (which goes all around the island), as do
two others. There are twelve places to set up around the
island like the numbers on a clock. Your price is fixed,
and all people go to the nearest lemonade stand.
The game is repeated. Every night, everyone moves un-
der cover of darkness (simultaneously) and in the morn-
ing, their locations are fixed. There is no cost to move.
After 100 days of summer, the game is over.
Therefore each game consists of 100 rounds or iterations

of the single-shot game. In the LSGT, all the participating
agents take part in an equal number of games to make the
tournament fair.

Utilities in the Lemonade Stand Game
In the LSG, there are 6, 12, or 18 customers at each of the
12 spots along the beach. The customers go to the near-
est lemonade stand, with ties split randomly. An agent gets
a dollar for each person that comes to its lemonade stand.
The utility of the repeated game is the sum of the utilities of
single-shot games.

Example Configuration
In order to aid understanding of the LSG, we present an ex-
ample configurations of a single round of the LSG in Fig-
ure 1. The three different shapes represent three competing
agents. The numbers outside the circle represent the number
of customers at each spot on the island. The numbers in the
center of the circle represent the utilities of the agents at the
end of this round.

Related Work
The inspiration for the Lemonade Stand Game and the con-
sequent tournament was taken from Alexrod’s iterated pris-
oner’s dilemma (Axelrod 1987).



Figure 1: An example configuration of a single-shot round
of the LSG.

Although there isn’t a lot of published research on the
Lemonade Stand Game, the game has received some atten-
tion in the last few years. (Zinkevich, Bowling, and Wunder
2011) outlines the objectives of the LSG and summarizes
the results from the first two years of the competition. In
(Sykulski et al. 2010) the strategy of the winning agent of
the 2009 version of the competition is presented in detail.
Furthermore, (Reitter et al. 2010) presents a study of the
performance of a meta-cognitive strategy against other triv-
ial and non-trivial hypothetical agents in the LSG.

Overview of LSGT 2011 Agents
In this section, we present an overview of the agents that
competed in the Lemonade Stand Game Tournament in
2011. Then we present a categorization of the agents based
on their design philosophy. Finally, we present the results
of an experiment consisting of the 2011 agents to see their
baseline performance. We present this information in or-
der to develop a better understanding of the results from our
experiments in subsequent sections, where we present our
proposed agent and compare it’s performance with the 2011
agents.

The 2011 agents are presented in the following subsec-
tions. Their descriptions are adapted from the original de-
scriptions provided on the LSG website (Zinkevich 2011b).

1. BMJoe (BMJ)
This agent uses a simple strategy in which it only takes into
account the last round. If the agent got its share of the cus-
tomers (at least one-third of the total number of customers
on the island), it will stay at its spot. Otherwise, it will move
to a spot that will give him third of the customers (assuming
the other agents won’t move).

If the agent cannot find a place that will get it a fair share,
it will try to punish one of the other agents by putting his
stand next to, or at the same spot as that agent until a spot
that will give him his fair share becomes available.

2. BowlingStrategy (BOW)
The strategy of this agent is to identify collusion-pairs, i.e.,
two spots which together would maximize the pairs’ com-
bined payoff. Pairs are then selected based on their col-
lusion success (the minimum combined utility the agents
can achieve) and their fairness (how different their utilities
would be without the third agent). Pairs with the highest col-
lusion success are chosen, and among those, pairs with the
fairest allocation are preferred. Of those still tied, a random
pair is chosen.

Given a chosen pair at the start of the game, the agent
tracks the accumulated score of the two positions in the pair.
The position with the highest cumulative score is chosen.
An initial bonus is given to the position in the pair, which
got the smaller (less fair) allocation. The agent takes the
smaller allocation in the hope that this would induce a fight
between the other agents for the larger allocation, whose
payoff would be lower when divided among the two agents.

3. BrownBot (BWN)
The strategy employed by this agent consists of a concept
of ‘leaders’ and ‘followers’. Leaders are agents who seek to
position themselves on the best spot on the island and hope
that the other agents would cooperate by looking for other
reasonable spots. Followers are agents that look to cooperate
with the leader by selecting a spot that is mutually beneficial
for the two.

If there are two leaders and one follower in the game, the
follower will benefit as the leaders will fight over the best
spot leaving the other spots to the follower. The opposite
also holds true in the case of two followers and one leader.
Taking this observation into account, this agent adopts a
leader strategy initially, which is adapted to a follower strat-
egy if the agent finds itself in a persistent conflict with an-
other agent for several turns.

4. NewAcrossS (NAS)
The strategy employed by this agent is similar to the Bowl-
ing agent. It attempts to find spots where two agents can
cooperate to achieve a higher payoff than the third agent. If
this strategy doesn’t work and the agent finds itself in the
last place, it attempts to ‘sandwich’ an agent (to lower it’s
utility) in order to force it to move to another spot. If this
doesn’t work, it will simply play the best response to the last
round’s moves.

5. GTTA (GTA)
This agent uses a refinement to the set of Nash Equilibria
to construct a set of strategies which correspond to a set of
types that opponents can take. The types considered by this
agent are: generous leader, fair leader, greedy leader, me
follower, other follower and unknown. Based on an assess-
ment of the other agents’ types, the agent forms its strategy
accordingly.

6. JerseyBeachcomber (JBC)
The strategy of this agent is based on the reasoning that it
is likely that one or both of the opposing agents will choose



a spot close to the best one. It is also possible that the op-
posing agents are on the two best spots. If this is the case,
the third agent would prefer picking a spot near the best,
leaving the next-best agent with a net higher score as the
two others fight over the best spot. The decision of when to
move from this initial spot (or any current location) is cal-
culated by keeping a tally of how many points the winning
agent is receiving, and moving once the difference between
the utilities gained by this agent and the winning one reaches
a threshold.

7. MatchMateAdv (MMA)
This agent tries to find a pure strategy solution by looking
for two spots that give the two agents the highest combined
reward, and among those the agent chooses the pair of spots
that is most fair for both agents. The agent then tries to find
a partner to play this pair by occupying one of the spots and
moving to the other spot if another agent is located at the
same spot as it.

8. Pujara (PUJ)
This agent initially picks a spot that is above some measure
of density (number of customers around that spot). The
agent keeps a track of it’s performance as the game pro-
gresses. The agent switches to another spot (chosen ran-
domly) if it consistently performs badly (i.e. the utility is be-
low some threshold value for a specific number of rounds).

Categorization of Agents
In this subsection, we present a categorization of agents on
the basis of whether they are cooperative or independent.
A cooperative agent seeks to find a colluding partner and
cooperate with it to maximize the combined utility, while an
independent agent simply seeks to maximize its own utility
and does not adopt any mechanism which takes other agents
into account.

Figure 2 presents the categorization. This categorization
will be helpful when we present our proposed agent because
it incorporates both categories in order to successfully com-
pete against all of the LSGT 2011 agents.

Figure 2: Categorization of the agents from LSGT 2011 into
cooperative or independent agents.

Baseline Performance
We conducted an experiment to evaluate the baseline per-
formance of the agents. The agents competed against each
other in a tournament of 10,000 games. The games were
selected in a manner that each agent participated in roughly
the same number of games in order to make the tournament
fair. The experiment was repeated 100 times to minimize the
effect of variance. The performance of the agents is given in
Figure 3.

Figure 3: Performance comparison of agents from LSGT
2011. Confidence intervals have been omitted as they were
too small to be visible.

Proposed Agent’s Strategy
In this section we provide details of the proposed agent’s
strategy.

The strategy of our agent is based on the following obser-
vations from the previous section’s experiment:

• Cooperative agents tend to perform better than indepen-
dent ones.

• Most of the games are ‘decided’ long before all the rounds
of a game are played; After the initial few rounds even
the best agents become static in the action they played
(regardless of their performance in the game). In a sense,
agents ‘run out of ideas’.

• Some agents aren’t designed to cooperate (or have dif-
ferent cooperation approaches) and hence attempts at co-
operation with them fail, resulting in lower utility of the
agent.

Taking these observations into account, we designed a co-
operative agent which switches to an aggressive punishment
strategy if attempts at cooperation fail. At any time during a
game, our agent is in one of six following states:

1. COLLUDE: This is the starting state of the agent. In this
state, the agent attempts to find a cooperating partner by
identifying pairs of spots which maximize the combined
utility of agents playing in those spots, and have a ‘fair’
division of utility among the agents. This state can be
considered a slightly modified version of BrownStrategy.

2. BEST SPOT: If attempts at collusion fail, the agent
switches to this state. In this state, the agent simply finds



the most ‘dense’ contiguous region on the board, and po-
sitions itself at the spot in the middle of the dense re-
gion. The rationale behind this decision is that if the
other agents aren’t cooperative, perhaps they can be intim-
idated to move from the best spot by reducing it’s value.
The agent continues to play in this state if its utility from
the previous round is at least better than one of the other
agents.

3. PUNISH: If the agent (in state BEST SPOT or CON-
STANT) notices that it’s utility from the previous round
is lower than both the other agents’ utilities, it switches to
this state. In this state, the agent attempts to ‘scare away’
the nearest agent by playing at a spot that minimizes the
utility of that agent (usually by placing its stall at the same
spot as that agent). If the agent notices that the agent it
is punishing isn’t forced to move after a set number of
rounds, it attempts to de-settle the other agent.

4. CONSTANT: While playing in the PUNISH state, the
agent monitors the utility it would get if it played at an-
other spot. If the expected utility is greater than the aver-
age utility for the game, the agent moves to that spot and
switches to this state. In this state, the agent does nothing;
it simply keeps playing in the same spot.

5. MAXIMIZE: If the agent finds that it can’t find a collud-
ing partner and neither of the other agents can be forced to
move to another spot, it goes into this state. In this state,
the agent simply seeks to maximize its utility given that
the other agents’ spots.
The actions of the agent can be configured by various pa-

rameters which affect the performance of the agent. The pa-
rameters along with their assigned values are given below.

1. COLLUDE THRESH: This parameter defines a thresh-
old for the max number of rounds the agent waits to find a
colluding partner. We set the default value of this param-
eter to 20.

2. DENSITY CONST: This parameter defines the number
of spots considered when determining the density of a re-
gion (used for selection of the best spot). We set the de-
fault value of this parameter to 4.

3. PUNISH THRESH: This parameter defines a threshold
for the max number of rounds the agent attempts to force
another agent away from its spot. We set the default value
of this parameter to 8.

Performance Evaluation
In this section we provide details of experiments performed
to evaluate the performance of our proposed agent in com-
parison with agents from LSGT 2011.

Experimental Setup
The experiments were performed on a Lenovo ThinkPad
X220 laptop computer with Ubuntu 11.10 (Oneric). The
system has 8 GB of RAM and features a Intel Core i5 pro-
cessor. The code for running the LSG was downloaded from
the tournament website (Zinkevich 2011b). Version 4.0.3 of
the code was used.

Experiments

For our experiments, we considered three variations of our
agent in order to determine which strategy performs the best:
always cooperate, always rebel, or a mix of both cooperation
and rebellion depending on the situation of the game. The
details of the modifications for each variation are given be-
low.

1. CooperatorAgent (COP): For this agent, we set the
value of COLLUDE THRESH to 100. This means that
the agent tries to collude with another agent for the entire
duration of the game.

2. RebellerAgent (REB): For this agent, we set the initial
state to BEST SPOT. This means that this agent never
goes into the COLLUDE state. It always occupies the
best spot and attempts to punish other agents attempting
to occupy the best spot.

3. CombinedAgent (COM): This default values and states
are used for this agent, as described in the preceding sec-
tion. Hence, the agent attempts to cooperate with another
agent for the first 20 rounds, after which it changes to an
aggressive punishment strategy if cooperation isn’t work-
ing.

We looked at these variations because we believe these
relate strongly to the categorization of agents that we pro-
vided earlier. The CooperatorAgent is a cooperative agent,
the RebellerAgent agent is an independent one, while the
CombinedAgent can be considered a mix of both categories
of agents.

We tested each of the three variations of our agent against
the agents from LSGT 2011 in three separate experiments
(i.e. the three variations of our agent weren’t evaluated
against each other). In each experiment, one of our varia-
tions competed with all the agents from LSGT 2011 and in a
tournament of 10,000 games (each agent played in approx-
imately 3333 games). Each experiment was repeated 100
times to minimize the effect of variance.

Figure 4: Performance of CooperatorAgent against agents
from LSGT 2011. Confidence intervals have been omitted
as they were too small to be visible.



Figure 5: Performance of RebellerAgent against agents from
LSGT 2011. Confidence intervals have been omitted as they
were too small to be visible.

Figure 6: Performance of CombinedAgent against agents
from LSGT 2011. Confidence intervals have been omitted
as they were too small to be visible.

Results
We present the results of our experiments in this subsec-
tion. Figure 4, 5 and 6 present the performance of Cooper-
atorAgent, RebellerAgent and CombinedAgent respectively
against the LSGT 2011 agents. CooperatorAgent and Re-
bellerAgent perform almost as good as the best perform-
ing agent from LSGT 2011. However, as Figure 6 in-
dicates, CombinedAgent outperforms all the agents from
LSGT 2011 by a large margin. CombinedAgent attains 83%
more utility than the second placed agent, BowlingStrategy.

CombinedAgent outperforms all the other agents because
of its ability to cooperate when other agents are willing to
cooperate and defect when cooperation isn’t an effective
strategy. This makes it a very difficult adversary to evalu-
ate and adapt to, and hence it performs better than the other
two variations.

In Figure 7, we present the performance of the three vari-
ations of our agent against each of the other LSGT 2011
agents individually (taking only those games into account in
which the compared agent was participating). CooperatorA-
gent and RebellerAgent perform better than average against
all the agents, but their performance against some of the
agents is just slightly above average. However, CombinedA-

Figure 7: Performance of our agent variations against indi-
vidual agents from LSGT 2011.

gent consistently performs well above the average against all
the agents.

Conclusion
In this paper, we examined the strategies employed by LSGT
2011 agents, and proposed a new strategy which outper-
forms all the 2011 agents by a significant margin. Our
agent’s performance is 83% better than the best agent from
2011 according to our experiments.

Our approach when designing this strategy was based on
a number of observations, such as the success of cooperative
agents, and the static behavior of most agents after the first
few rounds. Hence, we engineered our agent keeping these
observations into account and were able to create an agent
that was substantially better than the ones from the last years
competition.

We believe our experiments provide further insight into
the domain of autonomous multiagent interaction. Our work
was inspired by the desire to learn more about how agents
should react in an environment in which the seemingly ‘best’
action isn’t always the right one. Our results show that an
agent that incorporates a number of different strategies and
can adapt to the changes in the environment successfully is
likely to be better off than other, comparatively more static
agents.

Acknowledgments
We would like to acknowledge the participants of LSGT
2011 who have provided the source code of their agents and
descriptions of the employed strategies on the LSGT website
(Zinkevich 2011b). We would not have been able to perform
these experiments without them. We would further like to
thank Martin Zinkevich of Yahoo! Research who runs the
LSGT annually and maintains the code for the tournament.

References
Axelrod, R. 1987. The evolution of strategies in the iter-
ated prisoners dilemma. Genetic algorithms and simulated
annealing 32–41.
Reitter, D.; Juvina, I.; Stocco, A.; and Lebiere, C. 2010. Re-
sistance is futile: Winning lemonade market share through



metacognitive reasoning in a three-agent cooperative game.
In Proceedings of the 19th Behavior Representation in Mod-
eling & Simulation (BRIMS).
Sykulski, A. M.; Chapman, A.; Munoz de Cote, E.; and Jen-
nings, N. R. 2010. ea2: The winning strategy for the inau-
gural lemonade stand game tournament. In Proceedings of
the 2010 European Conference on Artificial Intelligence.
Zinkevich, M.; Bowling, M. H.; and Wunder, M. 2011.
The lemonade stand game competition: solving unsolvable
games. SIGecom Exchanges 10(1):35–38.
Zinkevich, M. 2011a. The future of multiagent learning.
Website: http://martin.zinkevich.org/lemonade/future.php.
Zinkevich, M. 2011b. The lemonade stand game tournament
website. Website: http://martin.zinkevich.org/lemonade/.


